

Content

Sunfab history	3
Product overview	4
Pumps fixed single flow	6
Pumps fixed dual flow	10
Pumps variable flow	16
Motors fixed	20
Accessories	26
Development	30
Production	31
Our service features	32
Quality & Environment	33
Global presence	34

Over 90 years after the start, we still manufacture and operate in Sweden

Sunfab develops, produces and sells components to operate hydraulic equipment within the area of mobile vehicles.

The Swedish company Sunfab can trace its roots back to Sundins Fabriker, a family company that was established as long ago as 1925 and, for many years, was a successful manufacturer of skis. A fleet of vehicles ensured reliable transportation of raw materials to the factory. Heavy, irrational loading and unloading gave Eric Sundin, the founder of the company, the incentive required to develop cranes for the vehicles.

The first crane was built in 1947 by HIAB, a separate company. As time went on, demands increased for greater

capacity and, in 1954, a hydraulic pump was developed that laid the foundation for the future successes of the new company, Sunfab.

These days, Sunfab Hydraulics AB supplies companies with some of the world's most sophisticated products in its niche market. Products that meet stringent quality, environmental and safety requirements and offer functional solutions. We are just embarking on a long and successful journey of development.

Product overview

Single flow pumps

Sunfab is your supplier of a wide range of hydraulic pumps. The pumps are optimised for all kinds of applications. We offer 12 different sizes in the range of 12-130 cm³ with pressure up to 400 bar.

SAP/SAPT 012-130 DIN

SAP 012-108 DIN Optimised

SAP 012-108 SAE

Dual flow pumps

The range of fixed displacement dual flow pumps SCPD and SLPD comprises 10 different sizes from 20/20 cm³ up to 76/76 cm³. The SCPD dual flow pumps are of bent-axis design, the SLPD pumps are of inline design with swash plate.

SCPD 56/26 DIN / By-Pass

SCPD 76/76 DIN

SLPD 20/20-64/32 DIN

10

16

Variable flow pumps

We offer variable pumps with a displacement of 62, 92, 112 and 130 cm³. An operating pressure of up to 450 bar, different kinds of regulators and tandem pump assembly enable you to use this kind of pump in almost all applications where you need a variable oil flow.

SVH 062-130 DIN

SVH 062-130 SAE

17

Fixed motors

Sunfab offers hydraulic motors according to SAE, ISO and DIN standard as well as cartridge motors. The displacement is 10-130 cm³ with a choice of shafts, seals and connection ports. High revolution speeds and a operating pressure up to 400 bar allows a power output of up to 285 kW.

SCM 010-130 ISO

SCM 010-130 SAE

SCM 010-034 SAE B2

Accessories

Sunfab's accessories are a unique range of components designed to meet a bodybuilder's need of basic hydraulic installations.

By-Pass

PTO Tracpower

Splitter Gearbox

SCP 012-130 ISO

SLPD 20/20-64/32 DIN SAVTEC 13

SLPD 40/20-64/32 SAE

14

SAM 010-130 DIN

23

Adapters & Flanges

Suspensions

Anti-cavitation & Flushing Valves

Speed Sensors

Injectors

28

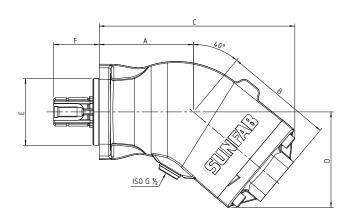
Pumps fixed single flow

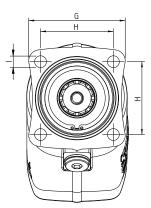
SAP/SAPT 012-130 DIN

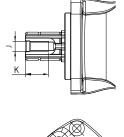
SAP/SAPT 012-130 DIN is a series of light weight casing piston pumps with a fixed displacement for demanding mobile hydraulics.

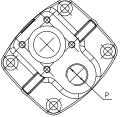
It covers the displacement range 12-130 cm³/rev. It covers the displacement range 12-130 cm³/rev. at a maximum pressure of 400 bar. It is a modern, compact pump which meets the market's high demands on flow performance, pressure, efficiency and small installation dimensions. The pump is either mounted directly on the power takeoff or on a frame bracket via an intermediate shaft.

SAPT 090, 130 is an addition to the SAP series that supports larger flows and pressure up to 300 bar. Ideal for applications that require both a high flow and a high working pressure.


Other advantages:


- Light weight metal casing design
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc
- Corrosion free lightweight-housing
- Less heat generation due to better ability to dissipate heat through housing


SAP/SAPT 012-130 DIN			012	017	025	034	040	047	056	064	084	090*	108	130*
Theoretical oil flow I/min									l/min					
at pump speed	rpm	500	6	9	13	17	21	24	28	32	42	45	54	65
		1000	13	17	25	34	41	47	57	64	84	90	108	130
		1500	19	26	38	51	62	71	85	95	125	135	162	195
Displacement	cm ³ /rev		12.6	17.0	25.4	34.2	41.2	47.1	56.0	63.6	83.6	90.0	108.0	130.0
Max pump speed														
continuous	rpm		2300	2300	2300	2300	1900	1900	1900	1900	1600	1500	1600	1500
intermittent			3000	3000	3000	3000	2500	2500	2500	2500	2100	2000	2100	2000
Max working pressure	bar		400	400	400	400	400	400	400	400	400	300	400	300
Weight	kg		6.9	6.9	7.1	7.1	9.8	9.8	9.8	9.8	13.9	9.8	13.9	13.9
Tare-weight torque (M)	Nm		6.7	6.7	7.0	7.0	11.5	11.5	11.5	11.5	18.5	11.5	18.5	18.5
Direction of rotation	Left (L) or Right (R)													

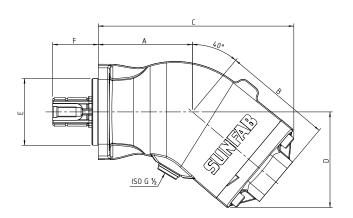

*SAPT

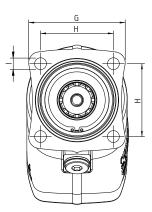
Pump Model			012	017	025	034	040	047	056	064	084	090*	108	130*
Dimensions	mm	Α	97	97	97	97	113	113	113	113	122	113	122	122
		В	116	116	116	116	131	131	131	131	147	131	147	147
		С	206	206	206	206	235	235	235	235	264	235	264	264
		D	115	115	115	115	118	118	118	118	127	118	127	127
		E	102	102	102	102	115	115	115	115	133	115	133	133
		F	98	98	98	98	98	98	98	98	98	98	98	98
		G	106	106	106	106	106	106	106	106	106	106	106	106
		Н	97	97	97	97	111	111	111	111	118	111	118	118
		- 1	13	13	13	13	13	13	13	13	13	13	13	13
		J	M12	M12	M12									
		K	28	28	28	28	28	28	28	28	28	28	28	28
	ISO G	D	3//	3//	3/4	3/4	3/4	3//	3/4	3/4	1	3/4	1	- 1

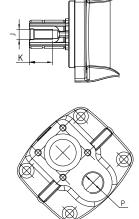
SAP 012-108 DIN Optimised

SAP DIN Optimised is a series of light weight casing piston pumps with a fixed displacement for demanding mobile hydraulics. It is variant of the standard SAP series, also suitable for electric motor drives due to the pump's higher speed properties and lower noise level.

SAP 012-108 DIN Optimised covers the displacement range 12-108 cm³/rev. at a maximum pressure of 400 bar. It is a modern, compact pump which meets the market's high demands on flow performance, pressure, efficiency and small installation dimensions. It is either mounted directly on the power take-off or on a frame bracket via an intermediate shaft.


The optimised option gives a more silent operation with higher pump speeds. It is a speed-optimised pump and therefore supplied for either left (L) or right (R) rotation direction.


Other advantages:


- Less noise than the standard SAP series
- Less pulsations in the system
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc
- Corrosion free light metal-housing
- Less heat generation due to better ability to dissipate heat through housing

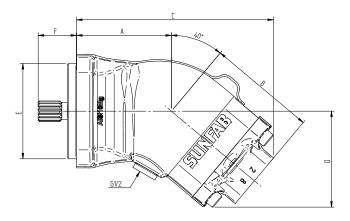
SAP 012-108 DIN Optimised			012	017	025	034	040	047	056	064	084	108
Theoretical oil flow I/min							l/min					
at pump speed	rpm	500	6	9	13	17	21	24	28	32	42	54
		1000	13	17	25	34	41	47	57	64	84	108
		1500	19	26	38	51	62	71	85	95	125	162
Displacement	cm ³ /rev		12.6	17.0	25.4	34.2	41.2	47.1	56.7	63.5	83.6	108.0
Max pump speed												
continuous	rpm		3000	3000	2500	2500	2000	2000	2000	2000	1800	1800
intermittent			3500	3500	3200	3200	2600	2600	2600	2600	2300	2300
Max working pressure	bar		400	400	400	400	400	400	400	400	400	400
Weight	kg		6.9	6.9	7.1	7.1	9.8	9.8	9.8	9.8	13.9	13.9
Tare-weight torque (M)	Nm		6.7	6.7	7.0	7.0	11.5	11.5	11.5	11.5	18.5	18.5
Direction of rotation	Left (L) or Right (R)											

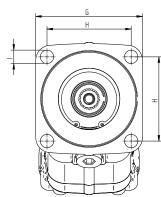
Pump Model			012	017	025	034	040	047	056	064	084	108
Dimensions	mm	Α	97	97	97	97	113	113	113	113	122	122
		В	116	116	116	116	131	131	131	131	147	147
		С	206	206	206	206	235	235	235	235	264	264
		D	115	115	115	115	118	118	118	118	127	127
		E	102	102	102	102	115	115	115	115	133	133
		F	98	98	98	98	98	98	98	98	98	98
		G	106	106	106	106	106	106	106	106	106	106
		Н	97	97	97	97	111	111	111	111	118	118
		- 1	13	13	13	13	13	13	13	13	13	13
		J	M12									
		K	28	28	28	28	28	28	28	28	28	28
	ISO G	P	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	1	1

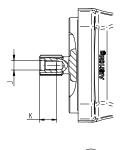
Pumps fixed single flow

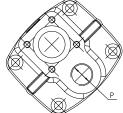
SAP 012-108 SAE

SAP 012-108 SAE is a series of light weight casing piston pumps with a fixed displacement for demanding mobile hydraulics.


SAP 012-108 SAE covers the displacement range 12-108 cm³/rev. at a maximum pressure up to 400 bar. It is a modern, compact pump which meets the market's high demands on flow performance, pressure, efficiency and small installation dimensions. The pump is either mounted directly on the power takeoff or on a frame bracket via an intermediate shaft.


Other advantages:


- Light weight metal casing design
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc
- Corrosion free lightweight-housing
- Less heat generation due to better ability to dissipate heat through housing


SAP 012-108 SAE			012	017	025	034	040	040	047	047	056	056	064	064	084	108
			SAE													
			B4	B4	B4	B4	B4	C4	B4	C4	B4	C4	B4	C4	C4	C4
Theoretical oil flow I/min																
at pump speed	rpm	500	6	9	13	17	21	21	24	24	28	28	32	32	42	54
		1000	13	17	25	34	41	41	47	47	57	57	64	64	84	108
		1500	19	26	38	51	62	62	71	71	85	85	95	95	125	162
Displacement	cm ³ /rev		12.6	17.0	25.4	34.2	41.2	41.2	47.1	47.1	56.7	56.7	63.5	63.5	83.6	108.0
Max pump speed																
continuous	rpm		2300	2300	2300	2300	1900	1900	1900	1900	1900	1900	1900	1900	1600	1600
intermittent			3000	3000	3000	3000	2500	2500	2500	2500	2500	2500	2500	2500	2100	2100
Max working pressure	bar		400	400	400	400	400	400	400	400	400	400	350	400	400	400
Weight	kg		7.3	7.3	7.5	7.4	9.7	10.4	9.7	10.4	9.2	9.9	9.6	10.3	16.2	15.9
Tare-weight torque (M)	Nm		7.2	7.2	7.4	7.3	10.2	10.9	10.2	10.9	9.7	10.4	10.1	10.8	22.3	21.9
Direction of rotation	Left (L) or Right (R)															

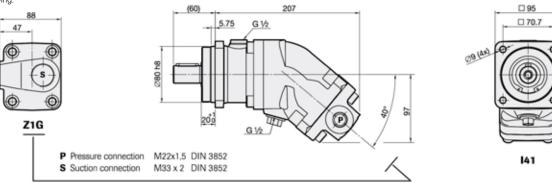
Pump Model			012-034 (SB4-B13)	040-064 (SB4-B13)	040-064 (SC4-C14)	084-108 (SC4-C14)
Dimensions	mm	Α	101	114	115	128
		В	116	131	131	148
		С	210	234	236	269
		D	102	115	115	133
		E	101.6	101.6	127	127
		F	41	41	56	56
		G	114	118	143	140
		Н	89.8	89.8	114.5	114.5
		1	14.3	14.3	14.3	14
		J	M10	M10	M12	M12
		K	18	18	18	18
	ISO G	P	3/4	3/4	3/4	1

SCP 012-130 ISO

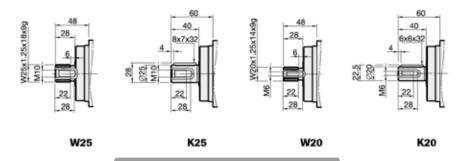
SCP 012-130 ISO is a series of piston pumps with a fixed displacement for mobile and stationary hydraulics.

SCP 012-130 ISO covers the entire displacement range 12-130 $\rm cm^3/rev.$ at a maximum pressure of 400 bar.

The pump's well dimensioned, double tapered roller bearings permit high shaft loads and lead to excellent speed characteristics. The pump is drained externally. It is speed-optimised and therefore supplied for either left (L) or right (R) rotation direction.


Other advantages:

- High maximum speed while maintaining low noise levels
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc.


SCP 012-130 ISO			012	017	025	034	040	047	056	064	084	090	108	130
Theoretical oil flow									l/min					
at pump speed		rpm 500	6	9	13	17	21	24	28	32	42	45	54	65
		1000	13	17	25	34	41	47	57	64	84	91	108	130
		1500	19	26	38	51	62	71	85	95	125	136	162	195
Displacement		cm³/rev	12.6	17.0	25.4	34.2	41.2	47.1	56.7	63.5	83.6	90.7	108.0	130.0
Max working pressure		bar	400	400	400	400	400	400	400	400	400	400	400	350
Max pump speed	n _{max (1)}	rpm	3300	3200	2550	2250	2200	2200	2100	2050	1700	1700	1700	1600
	n _{max limit (2)}		6000	5700	4700	4550	4300	4300	3750	3700	3350	3000	3000	2900
Max power		kW	25	35	40	50	55	65	75	85	90	95	120	120
Weight		kg	7.5	7.5	8.5	8.5	15.5	15.5	15.5	15.5	27.0	27.0	29.5	29.5
Mass moment of inertia (x 10 ⁻³)		kg m ²	0.9	0.9	1.1	1.1	2.6	2.6	2.6	2.6	7.4	7.4	7.4	7.4
Direction of rotation	Left (L) or Right (R)													

- (1) The values shown are valid for an absolute pressure of 1 bar at the suction inlet.
- (2) By increase of the input pressure the rotational speeds can be increased to the max. admissible speed, n max limit.

Example drawing.

Right-hand design R. Left-hand design L has pressure outlets on the opposite side

Pumps fixed dual flow

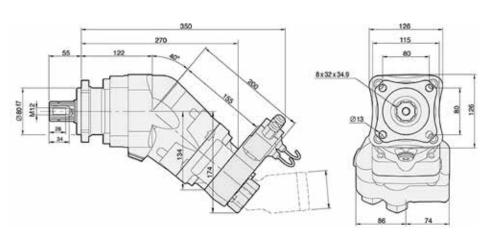
SCPD 56/26 DIN / By-Pass

SCPD 56/26 DIN is a double pump with two separate flows of different sizes.

SCPD 56/26 DIN gives 56.0 and 26.0 cm³/rev. and supports a maximum operating pressure of 400 bar. It can effectively be directly mounted on gear boxes equipped with engageable and disengageable power take-offs.

It is speed optimised and therefore supplied for either left (L) or right (R) rotation direction.

SCPD 56/26 DIN By-Pass is ideal for combination vehicles which require different flows and where there is a need to operate equipment while moving. The pump is primarily intended for engine-mounted power take-offs.


The constant engagement is made possible by the By-Pass valve, which immediately relieves the load on the pump and power take-off when oil is not required. The pressure drop of the By-Pass valve is very low, so its function is energy efficient.

Other advantages:

- High self-priming speed
- Constant low noise level
- Long life due to high demands on material selection, such as bearings, seals, etc.
- O-rings on all contact surfaces as well as double shaft seals
- The By-Pass valve can relieve the load from full operating pressure of 400 bar, which allows emergency stop function
- The valve's 24 V solenoids have integrated electrical cables which meet protection class ADR

SCPD 56/26 DIN By-Pass

Theoretical oil flow A+B		rpm	l/min		
at pump speed		600	34 + 16 = 50		
		1000	56 + 26 = 82		
		1200	67 + 31 = 98		
		1500	84 + 39 = 123		
		1800	101 + 47 = 148		
Displacement A+B	cm ³ /rev	56.0 + 26.1			
Max pump speed A+B	rpm	1850			
Max pump speed A	rpm	1850			
Max pump speed B	rpm	2200			
Max pump speed, relieved	rpm	2700			
Max working pressure	Bar	400			
Weight without valve	kg	18.0			
Weight with valve	kg	22.5			
Tare-weight torque without valve	Nm	21.0			
Tare-weight torque with valve	Nm	25.5			
Theoretical power at pressure and pump speed		rpm	200 Bar	300 Bar	400 Bar
		600	11.2 + 5.2 = 16.4 kW	16.8 + 7.8 = 24.6 kW	22.4 + 10.4 = 32.8 kW
		1200	22.4 + 10.4 = 32.8 kW	33.6 + 15.6 = 49.2 kW	44.8 + 20.8 = 65.6 kW
		1800	33.6 + 15.6 = 49.2 kW	50.4 + 23.4 = 73.8 kW	67.2 + 31.2 = 98.4 kW
Theoretical torque on pump shaft at different pressures			200 Bar	300 Bar	400 Bar
			178 + 83 = 261 Nm	267 + 124 = 391 Nm	356 + 165 = 521 Nm
Direction of rotation	Left (L) or Right (R)		·	·	

The pump is displayed in the left hand version

Cooling pipe connection GN

Flow 8

Connection GN

Connection GN

Connection GN

Connection GN

Connection GN

Connection GN

Spline shaft: DIN 5462 / ISO 14 Mounting flange: ISO 7653-D

SCPD 76/76 DIN

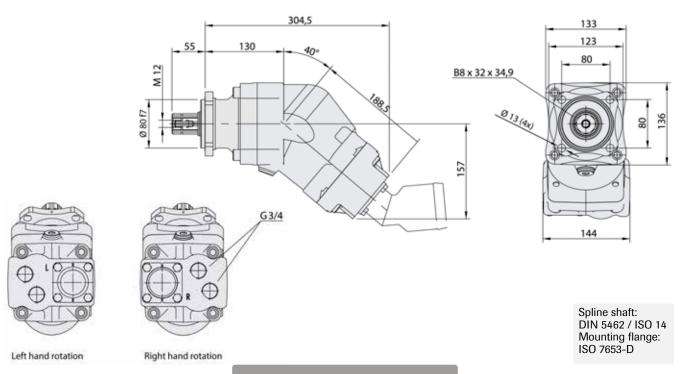
SCPD 76/76 DIN is a dual flow pump with two separate flows of equal sizes.

SCPD 76/76 DIN gives a maximum flow of 128+128=256 lit/min and supports a maximum working pressure of 350 bar. It can effectively be directly mounted on gear boxes equipped with engageable and disengageable power take-offs.

SCPD 76/76 DIN is a modern, compact pump, which meets the market's high demands on flow performance, pressure, efficiency and small installation dimensions. It is speed optimised and therefore supplied for either left (L) or right (R) rotation direction.

SCPD 76/76 DIN is superior by offering two big flows in combination with extremely compact size. The compact size makes it possible to mount the pump directly on the power take-off in very restricted spaces.

Other advantages:


- Large displacement gives the possibility of low engine speeds and low noise levels.
- Long life due to high demands on material selection, such as bearings, seals etc.
- O-rings on all contact surfaces as well as double shaft seals eliminate oil leakage from the pump and power takeoff.
- Highest displacement-to-size-ratio on the market.

SCPD 76/76 DIN

Theoretical oil flow A+B			l/min		
at pump speed	rpm	1000*	75 + 75 = 150		
		1500	113 + 113 = 226		
Displacement A+B	cm ³ /rev	75 + 75			
Max pump speed					
continuous	rpm	1500			
intermittent		1700			
Max working pressure	bar	350			
Weight	kg	23.2			
Tare-weight torque (M)	Nm	34.5			
Theoretical power at pressure and pump speed			200 Bar	250 Bar	350 Bar
	rpm	1000*	25.0 + 25.0 = 50.0 kW	31.3 + 31.3 = 62.6 kW	43.8 + 43.8 = 87.6 kW
		1500	37.5 + 37.5 = 75 kW	46.9 + 46.9 = 93.8 kW	65.6 + 65.6 = 131.2 kW
Theoretical torque on pump shaft at different pressures			200 Bar	250 Bar	350 Bar
			239 + 239 = 478 Nm	298 + 298 = 596 Nm	418 + 418 = 836 Nm
Direction of votation	Loft (L) o	n Dialet (D)			

Direction of rotation Left (L) or Right (R)

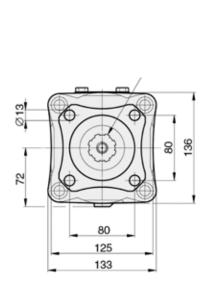
"We recommend a minimum pump speed of 1000 rpm to obtain optimal performance, efficiency and life-span of the pump.

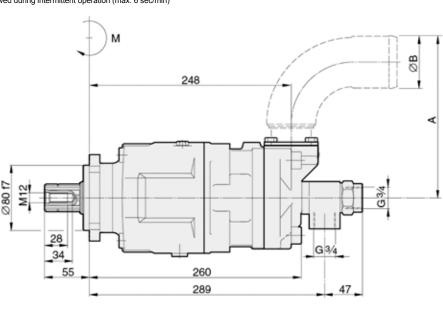
Pumps fixed dual flow

SLPD 20/20-64/32 DIN

SLPD 20/20-64/32 DIN is a series of in-line dual flow pumps with extremely low noise levels for demanding mobile hydraulics.

SLPD 20/20-64/32 DIN comes in eight different sizes, where three models feature differentiated flows. Pumps with differentiated flow increase the field of application as they can provide three different flows: one small, one large and one combined flow. Maximum pressure is 330-350 bar depending on the model. Its slim pump housing makes direct mounting on the power take-off possible in very confined areas. SLPD 20/20-64/32 DIN is also ideal for installation using a frame bracket via an intermediate shaft.


It is available in a version with a Savtec valve for applications where the hydraulics need to be used while the vehicle is on the move.


Other advantages:

- Independent direction of rotation
- A cost effective total solution in relation to a conventional installation using two pumps with a splitter gear box
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc.
- O-rings on all contact surfaces as well as double shaft seals
- Extremely low noise emission over entire speed and pressure ranges

SLPD 20/20-64/32 DIN			20/20	28/28	40/20	35/35	56/28	46/46	53/53	64/32
Theoretical oil flow						I/min				
at pump speed	rpm	500	10+10=20	14+14=28	20+10=30	17+17=34	27+14=41	23+23=46	26+26=52	32+16=48
	1	1000	20+20=40	28+28=56	41+20=61	34+34=68	55+28=83	46+46=92	53+53=106	63+32=95
	1	1500	31+31=62	41+41=82	61+31=92	51+51=102	82+41=123	69+69=138	79+79=158	95+47=142
Displacement	cm ³ /rev		20.4 +20.4	27.5 + 27.5	40.7 + 20.4	33.9 + 33.9	54.9 + 27.5	45.8 + 45.8	52.6 + 52.6	63.1 + 31.5
Max pump speed	rpm		2200	1800	2200	2200	1800	1800	1600	1600
Max working pressure	bar		350	350	350	330	350	330	330	350
Weight	kg		22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
Dimensioner	mm	Α	133	133	133	133	166	166	166	166
Min. dimensioner		В	50	50	50	50	64	64	64	64
Tare-weight torque (M)	Nm		26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5
Direction of rotation	Independent									

Maximum pressure combined with maximum speed is only allowed during intermittent operation (max. 6 sec/min)

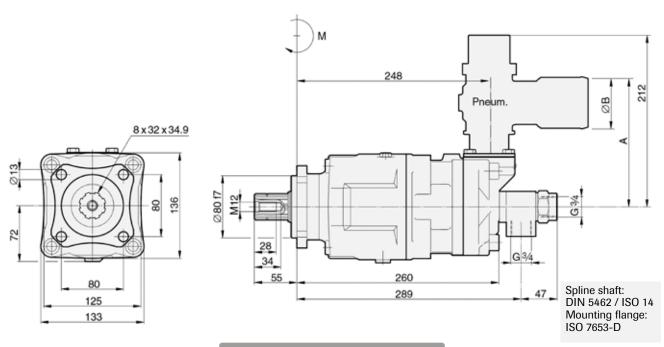
Spline shaft: DIN 5462 / ISO 14 Mounting flange: ISO 7653-D

SLPD 20/20-64/32 DIN SAVTEC

SLPD 20/20-64/32 DIN Savtec is equipped with a SAVTEC shut-off valve. Using a Savtec valve makes it possible to control the SLPD pump so it only feeds oil when required.

SLPD 20/20-64/32 DIN Savtec's valve is available as pneumatic remote control. The signal is obtained from e.g. the parking brake, pressure sensor or diode gate. With a closed Savtec valve it generates neither flow nor pressure, and in doing so does not load the power take-off. This has a positive effect on fuel economy.

SLPD 20/20-64/32 DIN Savtec features extra lubrication ducts on the bearings for lubrication even when the pump is run with the Savtec-valve closed.


The pump comes in eight different sizes, where three models feature differentiated flows. Pumps with differentiated flow increase the field of application as they can provide three different flows: one small, one large and one combined flow. Max pressure is 330-350 bar depending on the model.

Other advantages:

- Independent direction of rotation
- A cost effective total solution in relation to a conventional installation using two pumps in a splitter gear box
- Extremely low noise level
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc.
- O-rings on all contact surfaces as well as double shaft seals eliminate oil leakage from the pump and power take-off
- The Savtec valve can also be used as an emergency stop

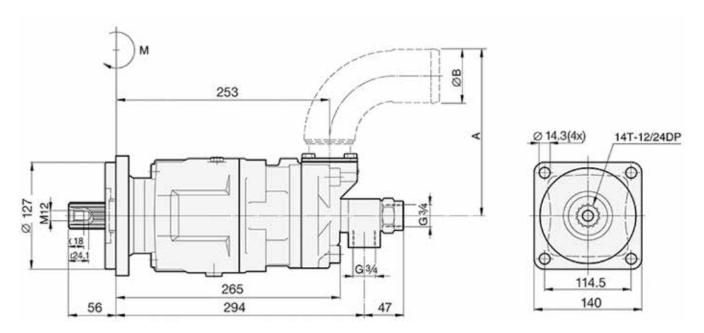
SLPD 20/20-64/32 DIN SAVTEC			20/20	28/28	40/20	35/35	56/28	46/46	53/53	64/32
Theoretical oil flow						l/min				
at pump speed	rpm	500	10+10=20	14+14=28	20+10=30	17+17=34	27+14=41	23+23=46	26+26=52	32+16=48
		1000	20+20=40	28+28=56	41+20=61	34+34=68	55+28=83	46+46=92	53+53=106	63+32=95
		1500	31+31=62	41+41=82	61+31=92	51+51=102	82+41=123	69+69=138	79+79=158	95+47=142
Displacement	cm ³ /rev		20.4 + 20.4	27.5 + 27.5	40.7 + 20.4	33.9 + 33.9	54.9 + 27.5	45.8 + 45.8	52.6 + 52.6	63.1 + 31.5
Max pump speed	rpm		2200	1800	2200	2200	1800	1800	1600	1600
Max pump speed, relieved	rpm		3000	2500	3000	3000	2500	2500	2500	2500
Max working pressure	bar		350	350	350	330	350	330	330	350
Weight	kg		23.5	23.5	23.5	23.5	23.5	23.5	23.5	23.5
Dimensions	mm	Α	133	133	133	133	166	166	166	166
Min. dimensions		В	50	50	50	50	64	64	64	64
Tare-weight torque (M)	Nm		29.5	29.5	29.5	29.5	29.5	29.5	29.5	29.5
Direction of rotation	Independent									

Maximum pressure combined with maximum speed is only allowed during intermittent operation (max. 6 sec/min)

Pumps fixed dual flow

SLPD 40/20-64/32 SAE

SLPD 40/20-64/32 SAE is a series of in-line double pumps with extremely low noise levels for demanding mobile hydraulics.

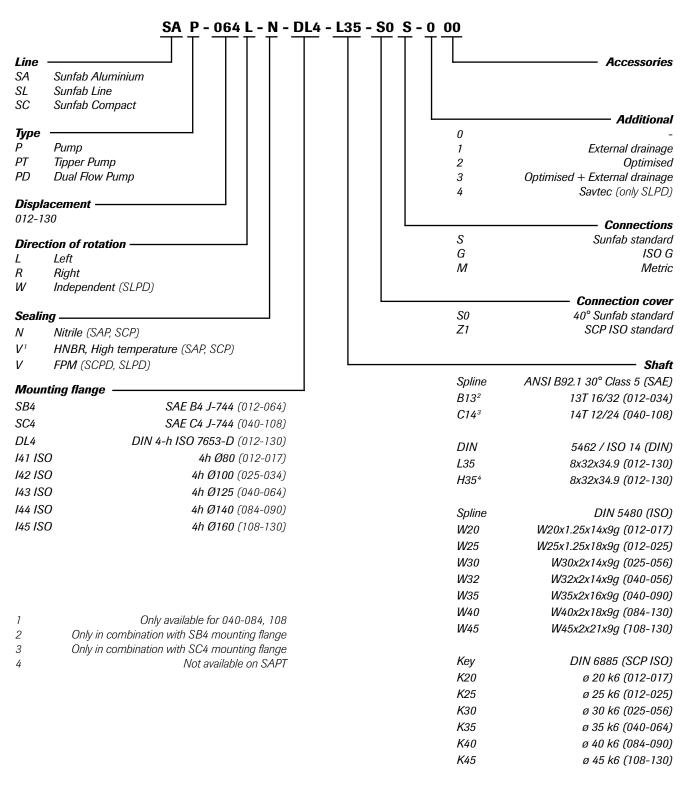

SLPD 40/20-64/32 SAE pumps are equipped with shafts and flanges according to the SAE-C standard. They are available in six different sizes. It's slim pump housing enables direct installation on the power take-off in very confined spaces. SLPD is also easy to install with frame mountings via an intermediate shaft. The high level of reliability is based on the choice of materials, hardening methods, surface structures and the quality assured manufacturing process. Maximum pressure is 330-350 bar, dependent on model.

Other advantages:

- Independent direction of rotation
- A cost effective total solution in relation to a conventional installation using two pumps with a splitter gear box
- Smooth operation over the entire speed range
- Long life due to high demands on material selection, such as bearings, seals, etc.
- O-rings on all contact surfaces as well as double shaft seals eliminate oil leakage from the pump and power take-off

SLPD 40/20-64/32 SAE			40/20	35/35	56/28	46/46	53/53	64/32
Theoretical oil flow					l/min			
at pump speed	rpm	500	20+10=30	17+17=34	27+14=41	23+23=46	26+26=52	32+16=48
		1000	41+20=61	34+34=68	55+28=83	46+46=92	53+53=106	63+32=95
		1500	61+31=92	51+51=102	82+41=123	69+69=138	79+79=158	95+47=142
Displacement	cm ³ /rev		40.7 + 20.4	33.9 + 33.9	54.9 + 27.5	45.8 + 45.8	52.6 + 52.6	63.1 + 31.5
Max pump speed	rpm		2200	2200	1800	1800	1600	1600
Max working pressure	bar		350	330	350	330	330	350
Weight	kg		22.0	22.0	22.0	22.0	22.0	22.0
Dimensioner	mm	Α	133	133	166	166	166	166
Min. dimensioner		В	50	50	64	64	64	64
Tare-weight torque (M)	Nm		26.5	26.5	26.5	26.5	26.5	26.5
Direction of rotation	Independent							

Maximum pressure combined with maximum speed is only allowed during intermittent operation (max. 6 sec/min)

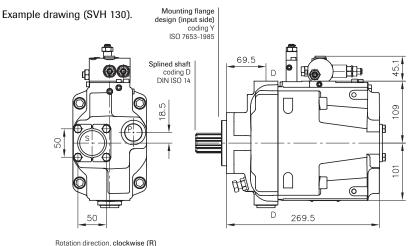


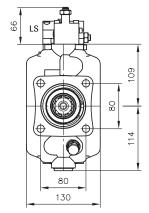
Spline shaft: DIN 5462 / ISO 14 Mounting flange: ISO 7653-D

Versions, Pumps

Pumps variable flow

SVH 062-130 DIN


Sunfab SVH DIN is a variable axial piston pump for load sensing systems, designed for direct installation on the truck's power take-off.


SVH supports a maximum pressure up to 450 bar, and is available in the sizes 62, 92, 112 and 130 cm³/rev. It is intended for use on forestry cranes, general cargo cranes, suction vehicles, refuse collection vehicles, etc. SVH variable pumps uniquely feature a slim pump housing which permits direct mounting on the power take-off.

Other advantages:

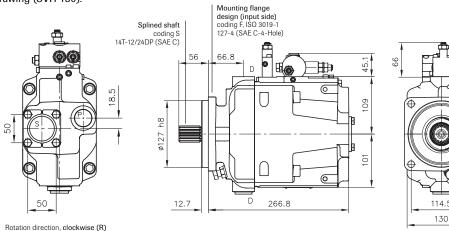
- Short reaction time when resetting the flow
- Compact installation dimensions
- High pressure
- Low noise level

Туре		SVH 062	SVH 092	SVH 112	SVH 130
Geometric displacement V_g	cm³/rev.	62.4	87.2	110.4	130
Nom. pressure p _{nom}	bar	350	350	350	400
Pressure p _{max}	bar	400	400	400	450
Angle of the swash plate		21.5°	21.5°	21.5°	21.5°
Required inlet pressure (absolute) for open circuit	bar	0.85	0.85	0.85	0.85
Max. permissible inlet pressure, absolute	bar	2	2	2	2
Max. permissible housing pressure, absolute	bar	3	3	3	3
Max. permissible drive torque (flange/shaft)	Nm	430	530	900	900
Max. torque for the pump (with power controller)	Nm	430	530	600	700
Max. permissible torque for the thru-shaft, dep. on flange	Nm	100	530	600	700
Max. rev. rating when self priming and max. angle of the swash plate at 1 bar absolute inlet pressure	rpm	2500	2300	2200	2100
Min. rev. rating for permanent running	rpm	500	500	500	500
Required torque at 100 bar	Nm	100	151	184	230
Drive power for 250 bar and 2000 rpm	kW	53	79,5	97.2	120
Mass (weight) complete with controller	kg	24	27	30	30.8
Tare weight torque	Nm	30	35.3	40	40
Inertia moment	kg m²	0.005	0.008	0.01	0.011
Sound level at 250 bar, 1500 rpm and max. swash plate angle (Measured in a sound measuring room DIN ISO 4412, distance 1 m)	dB(A)	75	75	75	75

(facing the input shaft)

SVH 062-130 SAE

Sunfab SVH SAE is a variable axial piston pump for load sensing systems, designed for direct installation on the truck's power take-off.

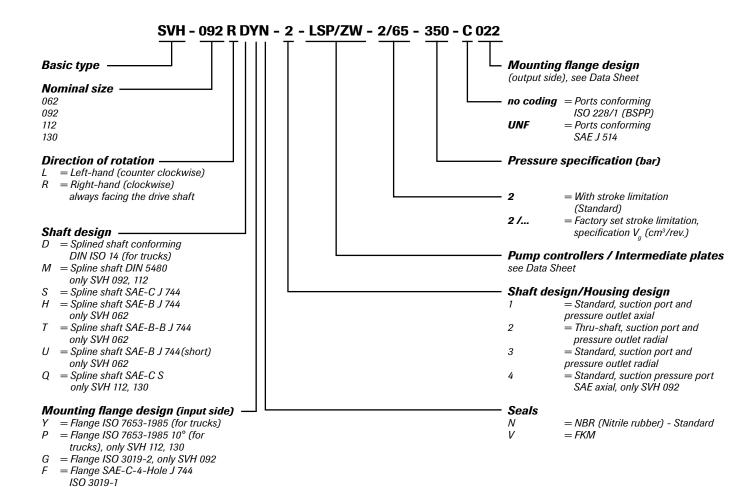

SVH supports a maximum pressure up to 450 bar, and is available in the sizes 62, 92, 112 and 130 cm³/rev. It is intended for use on forestry cranes, general cargo cranes, suction vehicles, refuse collection vehicles, etc. SVH variable pumps uniquely feature a slim pump housing which permits direct mounting on the power take-off.

Other advantages

- Short reaction time when resetting the flow
- Compact installation dimensions
- High pressure
- Low noise level

Туре		SVH 062	SVH 092	SVH 112	SVH 130
Geometric displacement V _g	cm³/rev.	62.4	87.2	110.4	130
Nom. pressure p _{nom}	bar	350	350	350	400
Pressure p _{max}	bar	400	400	400	450
Angle of the swash plate		21.5°	21.5°	21.5°	21.5°
Required inlet pressure (absolute) for open circuit	bar	0.85	0.85	0.85	0.85
Max. permissible inlet pressure, absolute	bar	2	2	2	2
Max. permissible housing pressure, absolute	bar	3	3	3	3
Max. permissible drive torque (flange/shaft)	Nm	430	530	900	900
Max. torque for the pump (with power controller)	Nm	430	530	600	700
Max. permissible torque for the thru-shaft, dep. on flange	Nm	100	530	600	700
Max. rev. rating when self priming and max. angle of the swash plate at 1 bar absolute inlet pressure	rpm	2500	2300	2200	2100
Min. rev. rating for permanent running	rpm	500	500	500	500
Required torque at 100 bar	Nm	100	151	184	230
Drive power for 250 bar and 2000 rpm	kW	53	79,5	97.2	120
Mass (weight) complete with controller	kg	24	27	30	30.8
Tare weight torque	Nm	30	35.3	40	40
Inertia moment	kg m²	0.005	0.008	0.01	0.011
Sound level at 250 bar, 1500 rpm and max. swash plate angle (Measured in a sound measuring room DIN ISO 4412, distance 1 m)	dB(A)	75	75	75	75

Example drawing (SVH 130).



(facing the input shaft)

For more information, technical data and drawings visit: www.sunfab.com

60

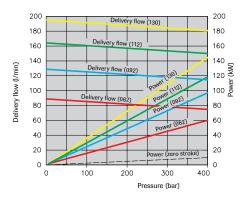
Versions, Variable Pumps

Description of pump controllers, SVH 062, 092, 112 & 130:

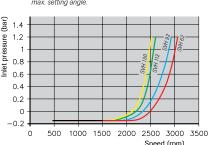
LSP = Load-Sensing controller with integrated pressure limitation.

= Flange SAE-B-4-Hole J 744 ISO 3019-1, only SVH 062 = Flange SAE-B-2-Hole-45°offset J 744 ISO 3019-1, only SVH-062

 ${f P}=$ Pressure controller, adjustable directly at the pump. The Pressure controller automatically maintains a constant system pressure independent of the required flow. Therefore it is ideally suited for constant pressure systems, where differing flow is required or as efficient pressure limitation of the hydraulic system.


/ZL (SVH 062, 092, 112) = Intermediate plate with power controller (torque limitation) "Pressure x Displacement" is held constant. Adjustment range: 25-100% of max. drive torque.

/ZW = Angled intermediate plate (45°) mandatory for mounting controller at pumps with radial inlet and outlet.


/L (SVH 130) = Power controller for SVH 130. Adjustment range: 200-700 Nm

Flow and Power

Charts show flow/pressure (without controller). Power at max. setting angle and power at min.setting angle and 1500 rpm

Inlet pressure (LSNR-controller) Graph valid at viscosity 75 mm²/s at

Motors fixed

SCM 010-130 ISO

SCM 010-130 ISO is a range of robust axial piston motors especially suitable for mobile hydraulics.

SCM 010-130 ISO is of the bent-axis type with spherical pistons. The design results in a compact motor with few moving parts, high starting torque and high reliability. It covers the entire displacement range 10-130 cm³ /rev. at a maximum pressure of 400 bar. The motor's well dimensioned, double tapered roller bearings permit high shaft loads and lead to excellent speed characteristics. The high level of reliability is based on the choice of materials, hardening methods, surface structures and the quality assured manufacturing process.

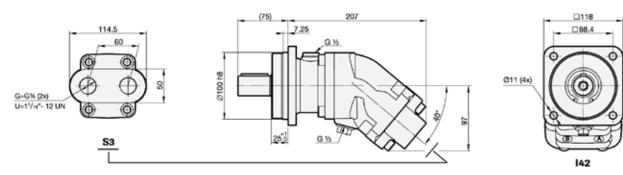
Other advantages:

- High maximum speed
- Smooth operation over the entire speed range
- Available in many different configurations of shafts and connections
- High efficiency
- Speed sensor available as option
- Suitable for applications with high angular accelerations due to its high rotary stiffness (timing gear)

		040	040	047	005	004	040	0.47	050	004	004	000	400	400
SCM 010-130 ISO		010	012	017	025	034	040	047	056	064	084	090	108	130
Displacement	cm ³ /rev	9.6	12.6	17.0	25.4	34.2	41.2	47.1	56.7	63.5	83.6	90.7	108.0	130.0
Working pressure														
max intermittent	bar	400	400	400	400	400	400	400	400	400	400	400	400	350
max continuous		350	350	350	350	350	350	350	350	350	350	350	350	300
Revolutions														
max intermittent	rpm	8800	8800	8800	7000	7000	6300	6300	6300	6300	5200	5200	5200	5200
max continuous		8000	8000	8000	6300	6300	5700	5700	5700	5700	4700	4700	4700	4700
min continuous		300	300	300	300	300	300	300	300	300	300	300	300	300
Power														
max intermittent	kW	41	54	74	86	115	125	145	175	195	215	230	275	285
max continuous		15	20	25	40	55	60	65	80	90	100	110	130	135
Starting torque theoretical value	Nm/bar	0.15	0.20	0.27	0.40	0.54	0.66	0.75	0.89	1.0	1.33	1.44	1.71	2.06
Moment of inertia (x 10 ⁻³)	kg m ²	0.9	0.9	0.9	1.1	1.1	2.6	2.6	2.6	2.6	7.4	7.4	7.4	7.4
Weight	kg	8.5	8.5	8.5	9.5	9.5	16.5	16.5	16.5	16.5	28.0	28.0	30.5	30.5

Information about technical data

Data concerning RPM is based on maximum permitted peripheral velocity for the tapered roller bearings.


Max intermittent power may depend on application. For further information please contact Sunfab.

Continuous power data is based on maximum output power without external cooling of the motor housing.

Intermittent duty is defined as follows: max 6 seconds per minute, e.g. peak RPM when unloading or accelerating.

Example drawing.

SCM 025-034 ISO

SCM 010-130 SAE / SAE B2

Sunfab's SCM 010-130 SAE is a range of robust axial piston motors especially suitable for mobile hydraulics.

SCM 010-130 SAE is of the bent-axis type with spherical pistons. The design results in a compact motor with few moving parts, high starting torque and high reliability. It covers the entire displacement range 10-130 cm³/rev. at a maximum pressure of 400 bar. It features double tapered roller bearings, which permits high shaft loads and gives superb speed performance.

The high level of reliability is based on the choice of materials, hardening methods, surface structures and the quality assured manufacturing process. Sunfab also offers a two hole flange, SAE B2 010-034.

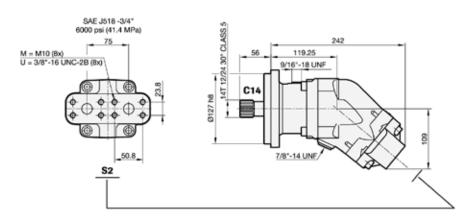
Other advantages:

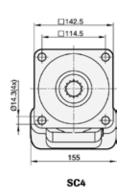
- High maximum speed
- Smooth operation over the entire speed range
- Available in many different configurations of shafts and connections
- High efficiency
- Speed sensor available as option
- Suitable for applications with high angular accelerations due to its high rotary stiffness (timing gear)

SCM 010-130 SAE		010	012	017	025	025	034	034	040	047	056	064	084	084	090	090	108	108	130
		SAEB	SAE B	SAE B	SAE B	SAEC	SAE B	SAEC	SAEC	SAEC	SAEC	SAEC	SAEC	SAED	SAEC	SAE D	SAEC	SAE D	SAE D
Displacement	cm ³ /rev	9.6	12.6	17.0	25.4	25.4	34.2	34.2	41.2	47.1	56.7	63.5	83.6	83.6	90.7	90.7	108.0	108.0	130.0
Working pressure																			
max intermittent	bar	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	350
max continuous		350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	350	300
Revolutions																			
max intermittent	rpm	8250	8250	8250	6500	6500	6500	6500	5900	5900	5900	5900	4800	4600	4800	4600	4800	4600	4600
max continuous		7500	7500	7500	5900	5900	5900	5900	5300	5300	5300	5300	4400	4200	4400	4200	4400	4200	4200
min continuous		300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300	300
Power																			
max intermittent	kW	41	50	70	80	80	110	110	120	135	165	180	200	190	215	205	255	245	255
max continuous		15	20	25	40	40	55	55	60	65	80	90	100	100	110	110	130	130	135
Starting torque theoretical value	Nm/bar	0.15	0.20	0.27	0.40	0.40	0.54	0.54	0.66	0.75	0.89	1.00	1.33	1.33	1.44	1.44	1.71	1.71	2.06
Moment of inertia (x 10 ⁻³)	kg m²	0.9	0.9	0.9	1.1	1.1	1.1	1.1	2.6	2.6	2.6	2.6	6.3	7.4	6.3	7.4	6.3	7.4	7.4
Weight	kg	9.0	9.0	9.0	9.0	9.0	9.0	9.0	15.0	15.0	15.0	15.0	18.0	35.0	18.0	35.0	18.0	35.0	35.0

Information about technical data

Data concerning RPM is based on maximum permitted peripheral velocity for the tapered roller bearings.


Max intermittent power may depend on application. For further information please contact Sunfab.


Continuous power data is based on maximum output power without external cooling of the motor housing.

Intermittent duty is defined as follows: max 6 seconds per minute, e.g. peak RPM when unloading or accelerating.

Example drawing.

SCM 040-064 SAE

Motors fixed

SCM 025-108 M2

Sunfab's SCM 025-108 M2 is a range of robust axial piston motors with cartridge flange especially suitable for winch-, slewing-, wheel- and track drives.

SCM 025-108 M2 is of the bent-axis type with spherical pistons. The design results in a compact motor with few moving parts, high starting torque and high reliability. The SCM 025-108 M2 covers the entire displacement range 25-108 cm³/rev. at a maximum pressure of 400 bar.

The motor's well dimensioned, double tapered roller bearings permit high shaft loads and lead to excellent speed characteristics. The high level of reliability is based on the choice of materials, hardening methods, surface structures and the quality assured manufacturing process.

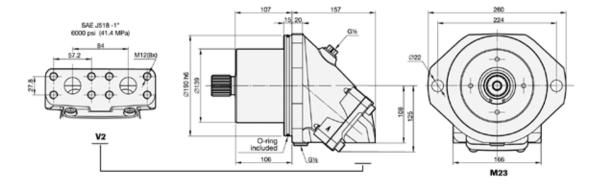
Other advantages:

- High maximum speed
- Smooth operation over the entire speed range
- High efficiency
- Suitable for applications with high angular accelerations due to its high rotary stiffness (timing gear)

SCM 025-108 M2		025	034	040	047	056	064	084	090	108
Displacement	cm ³ /rev	25.4	34.2	41.2	47.1	56.7	63.5	83.6	90.7	108.0
Working pressure										
max intermittent	bar	400	400	400	400	400	400	400	400	350
max continuous		350	350	350	350	350	350	350	350	300
Revolutions										
max intermittent	rpm	7000	7000	6300	6300	6300	6300	5200	5200	5200
max continuous		6300	6300	5700	5700	5700	5700	4700	4700	4700
min continuous		300	300	300	300	300	300	300	300	300
Power										
max intermittent	kW	86	115	125	145	175	195	215	230	230
max continuous		40	55	60	65	80	90	100	110	110
Starting torque theoretical value	Nm/bar	0.40	0.54	0.66	0.75	0.89	1.00	1.33	1.44	1.71
Moment of inertia (x 10 ⁻³)	kg m²	1.1	1.1	2.6	2.6	2.6	2.6	7.4	7.4	7.4
Weight	kg	11.0	11.0	18.3	18.3	18.3	18.3	26.0	26.0	26.0

Information about technical data

Data concerning RPM is based on maximum permitted peripheral velocity for the tapered roller bearings.


Max intermittent power may depend on application. For further information please contact Sunfab.

Continuous power data is based on maximum output power without external cooling of the motor housing.

Intermittent duty is defined as follows: max 6 seconds per minute, e.g. peak RPM when unloading or accelerating.

Example drawing.

SCM 084-108 M2

SAM 010-130 DIN

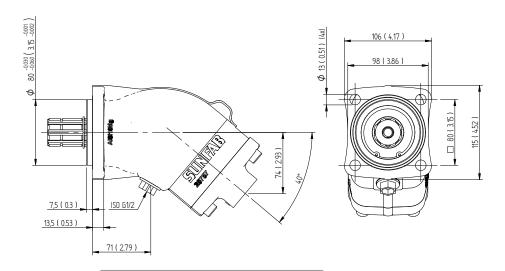
SAM 010-130 DIN is a series of light weight casing axial piston motors, particularly suitable for mobile hydraulics. SAM 010-130 DIN is of the bent-axis type with spherical pistons.

The design gives a compact motor with few moving parts, high starting torque and high operational reliability. It covers the entire displacement range 10-130 cm³/rev. with max. pressure 400 bar.

The high level of reliability is due to the choice of materials, hardening methods, surface structures and the quality assured manufacturing process.

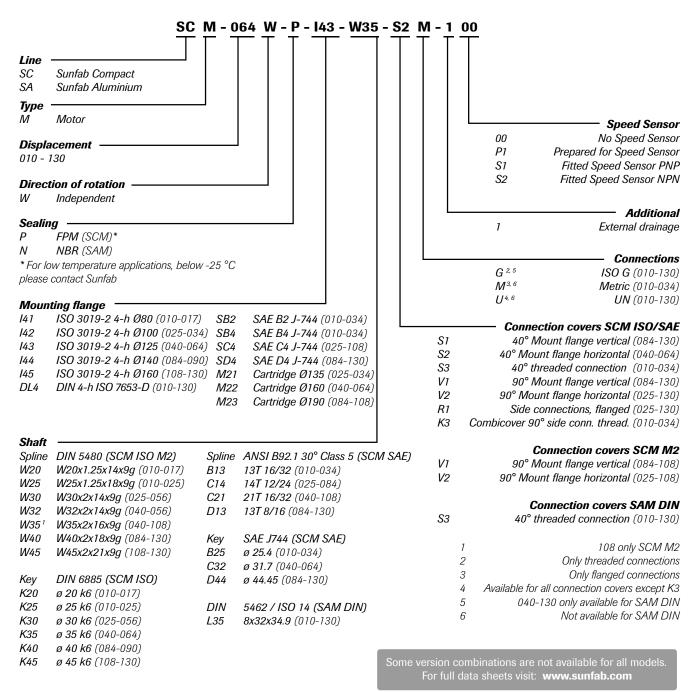
Other advantages:

- Corrosion free light metal-housing
- Smooth operation over the entire speed range
- High efficiency
- Suitable for applications with high angular accelerations due to its high rotary stiffness (timing gear)
- Light weight
- Less heat generation due to better ability to dissipate heat through housing


SAM 010-130 DIN		010	012	017	025	034	040	047	056	064	084	090	108	130
Displacement	cm³/rev	9.6	12.6	17.0	25.4	34.2	41.2	47.1	56.7	63.5	83.6	90.7	108.0	130.0
Working pressure														
max intermittent	bar	400	400	400	400	400	400	400	400	400	400	400	400	330
max continuous		350	350	350	350	350	350	350	350	350	350	350	350	280
Revolutions														
max intermittent	rpm	3000	3000	3000	3000	3000	2500	2500	2500	2500	2000	2000	2000	2000
max continuous		2400	2400	2400	2400	2400	2000	2000	2000	2000	1600	1600	1600	1600
min continuous		300	300	300	300	300	300	300	300	300	300	300	300	300
Power														
max intermittent	kW	14	18	24	36	49	57	65	78	88	93	100	120	124
max continuous		11	14	19	29	39	46	52	62	70	74	81	96	99
Starting torque theoretical value	Nm/bar	0.15	0.20	0.27	0.40	0.54	0.66	0.75	0.89	1.0	1.33	1.44	1.71	2.06
Moment of inertia (x 10 ⁻³)	kg m ²	0.9	0.9	0.9	1.1	1.1	2.6	2.6	2.6	2.6	7.4	7.4	7.4	7.4
Max intermittent housing pressure	bar	5	5	5	5	5	5	5	5	5	5	5	5	5
Weight	kg	6.9	6.9	6.9	7.1	7.1	9.9	9.9	9.9	9.9	13.8	13.8	13.8	13.8

Information about technical data

Intermittent operation refers to a max of 6 seconds per minute, representing e.g. peaks in rotational speed during unloading and acceleration.


Example drawing.

SAM 040-064 DIN

Versions, motors

Shaft seal

Max. housing pressure bar at rpm

SCM	Code	1500	3000	5200	6300	7000 (M2)	8250 (SAE)	8800 (ISO)	
010-034	Р	7	7	4	3.5	3	2.5	2.5	
040-064	Р	7	6	3.5	3	-	-	-	
084-130	Р	7	4	3	-	-	-	-	

Code according to diagram above.

For low temperature applications, below -25 °C please contact Sunfab.

The drainage oil should have a maximum temperature of 115 °C with the P shaft seal. This temperature must not be exceeded.

The housing pressure must be equal to or greater than the external pressure on the shaft seal.

To ensure the function of the shaft seal and lubrication of the motor, we recommend a min. housing pressure of 0,5 bar. If needed, a spring loaded check valve of 0,5 bar can be installed on the housing drain line.

Accessories

Tracpower PTO

Sunfab By-Pass is a relief valve for the SCP and SAP pump providing remote switching between idling and operation.

By-Pass is used in installations where the power take-off is not disengaged during transport. These are usually found on vehicles fitted with hydraulic equipment that needs to be operated while on the move, for example, road maintenance vehicles, concrete mixers, refuse collection trucks, etc.

Other advantages:

- Symmetrical design supports installation of the magnetic valve in different directions, and use on both right and left-hand rotating pumps
- Deutsch connector IP69
- Highly efficient due to low pressure drop

Splitter gearbox SZ mounted in a frame bracket, permits the assembly of two pumps on the same power take-off.

Splitter gearbox SZ provides unlimited freedom to combine pumps with different size flows.

Other advantages:

- Suitable for all Sunfab pumps with DIN flange
- Can be mounted horizontally or vertically

Tracpower increases the speed of the tractor's power take-off 2.5 times, which gives better conditions for hydraulic operation.

Tracpower is the solution when the tractor's original hydraulics do not give sufficiently large flow and pressure.

Other advantages:

- Suitable for all Sunfab pumps with DIN flange
- Can be mounted horizontally or vertically

Sunfab has a wide range of accessories that facilitates the mounting of pumps and motors

In applications where it is not possible to directly mount a pump or motor, Sunfab has a wide range of adapters, flanges and brackets to help facilitate

the installation. For example mounting on a countershaft due to lack of space, two or more pump gearboxes and compressors.

Adapter & Flanges

- Adapters
- Adapter flanges
- Splined drive flanges
- Neutral drive flanges

Suspensions

- Frame attachments
- Pump brackets
- Intermediate Shaft

Accessories

Anti-cavitation Valve for SCM

Flushing Valve for SCM

Speed Sensor for SCM

Injector

The Sunfab anti-cavitation valve is designed to be mounted directly on the hydraulic motor and prevents cavitation problems when the load is running down.

Sunfab's anti-cavitation valve is used to minimise the risk of cavitation damage in connection with insufficient inlet pressure.

This can occur, for example, in applications with a relatively large rotating mass with a long run-down time (e.g. fan operations). The hydraulic motor must have a defined direction of rotation when using Sunfab's anti-cavitation valve. The valve can be adapted to both left and right rotation.

The flushing valve is required when operating at high speeds and power levels.

The flushing valve ensures that the oil temperature inside the motor housing remains at the recommended level. Excessively high temperatures reduce the service-life of the shaft seal and the viscosity of the oil deteriorates.

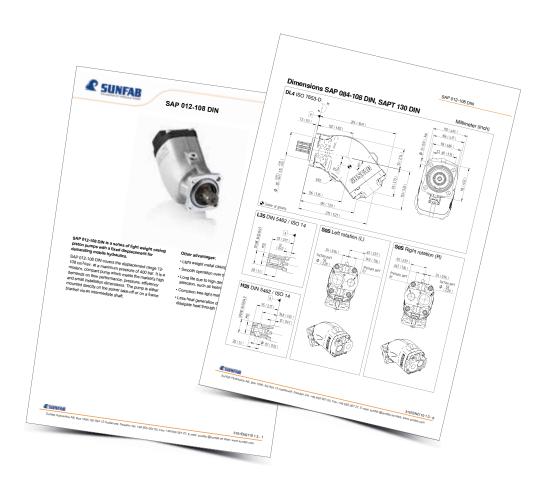
For hydraulic motors that require a specific given speed Sunfab offers a speed sensor with electronic measurement.

Sunfab speed sensor is available for any ISO/SAE motor, displacement 010-130 cc. The sensor is a two channel hall effect sensor. The sensor has two frequency outputs both giving square wave signals, phase shifted. It can operate at high temperatures. The frequency is determined by:

$$f = \frac{30*n}{60} = \frac{n}{2}$$
, n (rpm)

Other benefits:

- It can operate at high temperatures.
- The speed is detected from the gears on the cylinder block. Since the sensor is working with two channels the rotation direction can be detected.
- The number of gears is 30 for all motor displacements.
- Motors manufactured prepared for speed sensor can also have a sensor fitted afterwards.


Sunfab Injector K-JET 2 is a basic technical solution for the recirculation of oil in closed hydraulic systems which is cost efficient and saves weight.

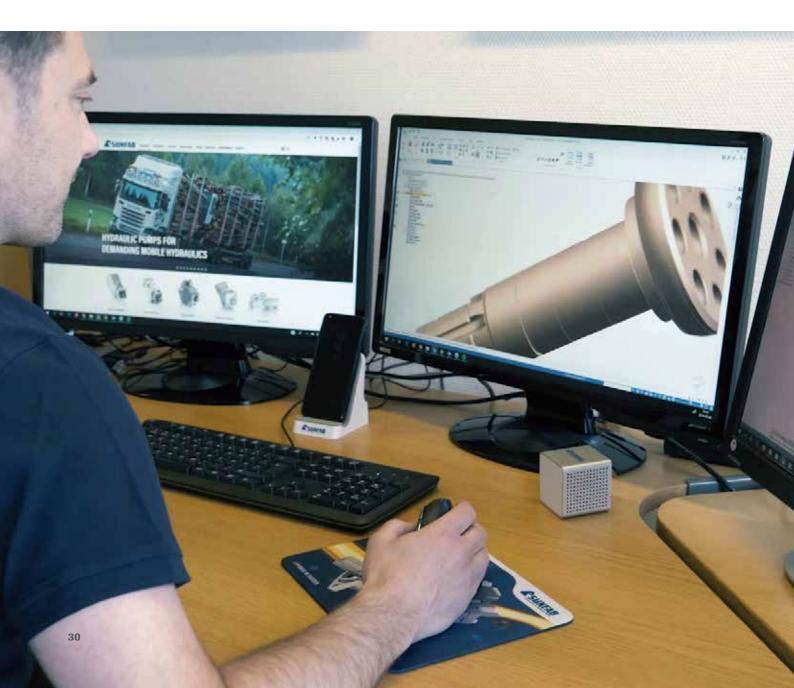
K-JET 2 recirculates the oil with an injector. This function replaces the previous standard of feed pressure pumps as compensation for leakage oil losses in the main circuit and any scavenging pumps for the cooling and filtering circuits.

Other advantages:

- Significantly higher pump speed
- Reduced tank size and oil volume. Only 15-20 % of the main pump flow
- Lower weight through smaller oil tanks
- Lower cost for oil

Find all our data sheets on our web page: **www.sunfab.com**

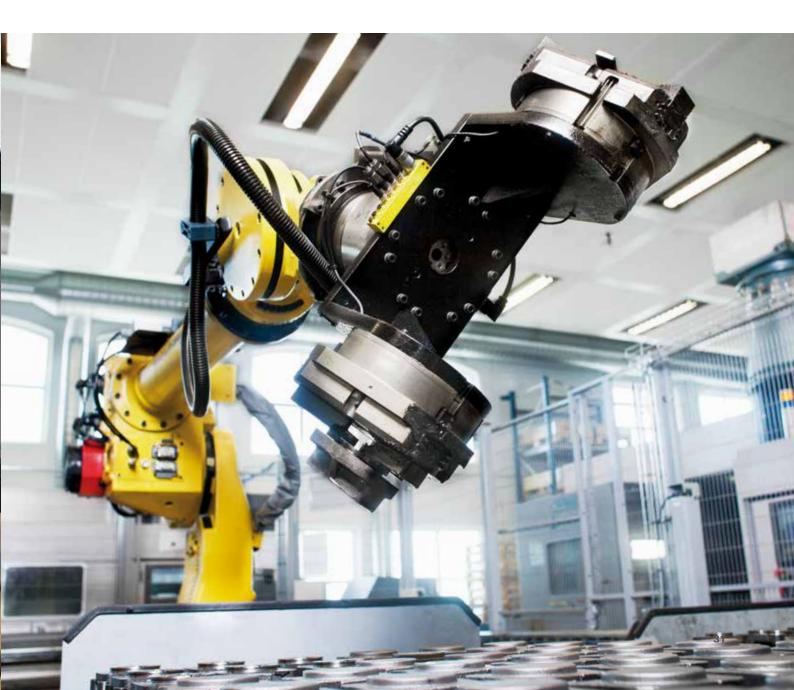
Development


Sunfab's product quality is world famous.

Our Pumps and Motors undergo stringent testing in our own lab and test rigs during production to ensure unsurpassed reliability in the field. Our state of the art production facility employs only the most experienced CNC operators and Service Technicians.

Cutting edge technology, together with high quality sensors and control components, produce the requisite conditions for structured and accurate measurement results.

Our Design Department is pleased to answer customers' technical questions on the e-mail address tech@sunfab.se.

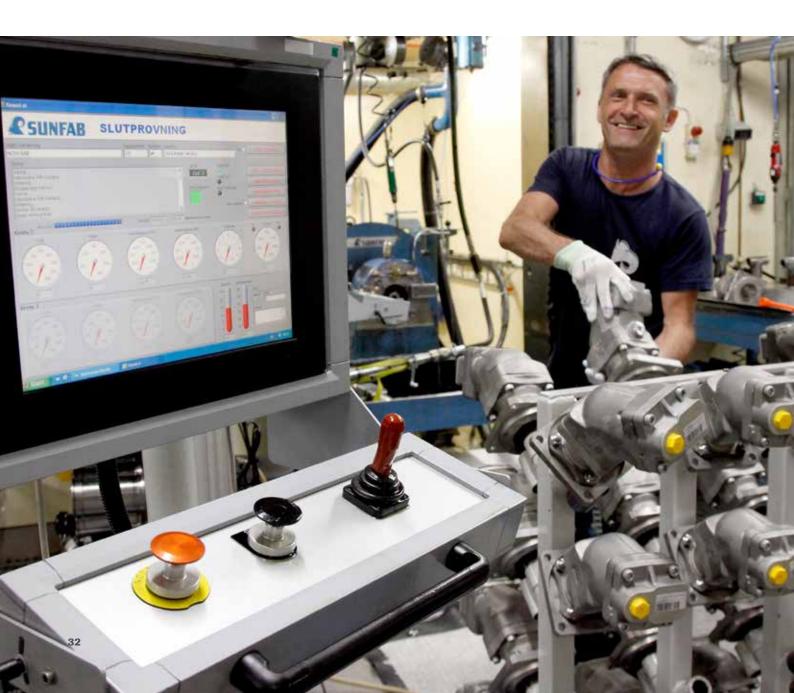

Production

Proven production ensures quality

We are convinced our manufacturing expertise and know-how are key ingredients in our continuing success.

That's why we manufacture all core components in-house, ensuring that our products live up to their well known quality and high performance.

Our service features


We are at your service. It is always easy to find the right contact person in our company.

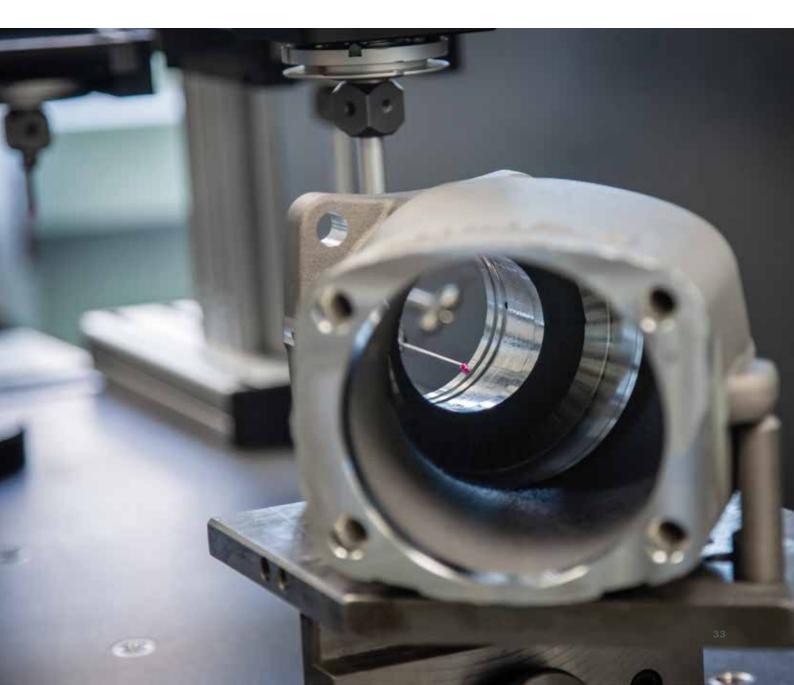
The service line offers fast help. Please send your technical questions to: tech@sunfab.se

On the website www.sunfab.com you can find the newest datasheets, installation guides and news.

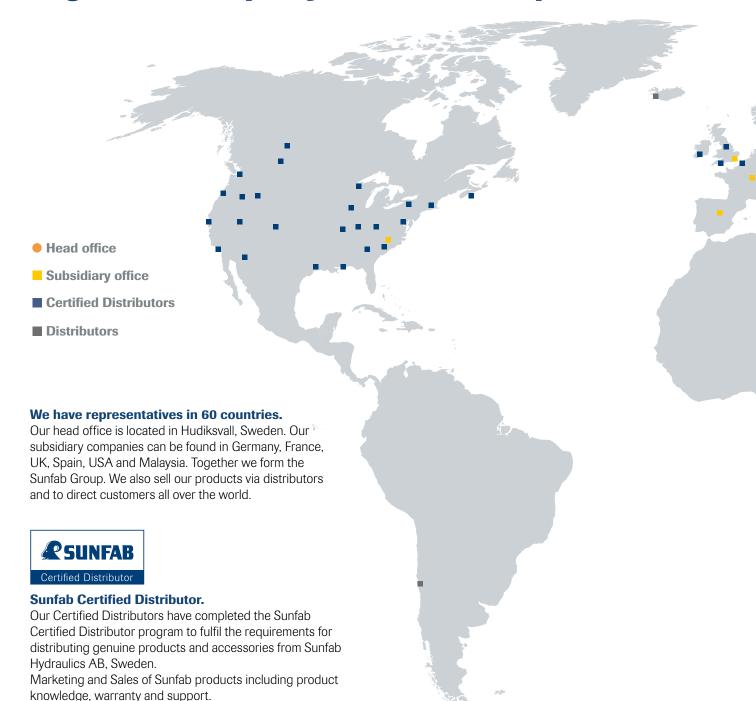
In warranty matters, we always strive to provide a quick response and analysis.

If you require further information about our products, please send an email to: sunfab@sunfab.se

Quality & Environment


A series of factors have accounted for Sunfab's success in the market. Creative and innovative development and long-term work have been combined with stringent demands on environmental accountability, function, quality and components.

Our ability to listen to the real needs of our customers provides the essential impulses for driving developments forward and creating new, improved products. The commitment, sense of responsibility and creativity of our employees are other key factors. We strive to make continual improvements in all areas of our business, which is registered under the ISO 9001:2008 and ISO 14001:2004 standards.


We are constantly upgrading our machinery to ensure we always work with state-of-the-art production equipment and we have total control of the whole manufacturing process that takes place in our own factory in Sweden. At each state of product development, we systematically select design

and production solutions that provide optimal performance and reliability.

Before being released onto the market, all products are subjected to a gruelling series of tests, both in the laboratory and in practice. Since 1995, the demand for our hydraulic pumps and motors has accelerated and sales have tripled. In 2006, to satisfy the demands and needs of the market, we carried out our largest ever investment programme - the construction of a 3,500 sqm workshop area. The new factory was integrated with the existing facilities to offer maximum efficiency.

A global company with a local presence

Head office

Sunfab Hydraulics AB Box 1094 Street address: Varvsgatan 2-4 SE-824 12 Hudiksvall Sweden

Tel.: +46 650 367 00 E-mail: sunfab@sunfab.se Website: www.sunfab.se

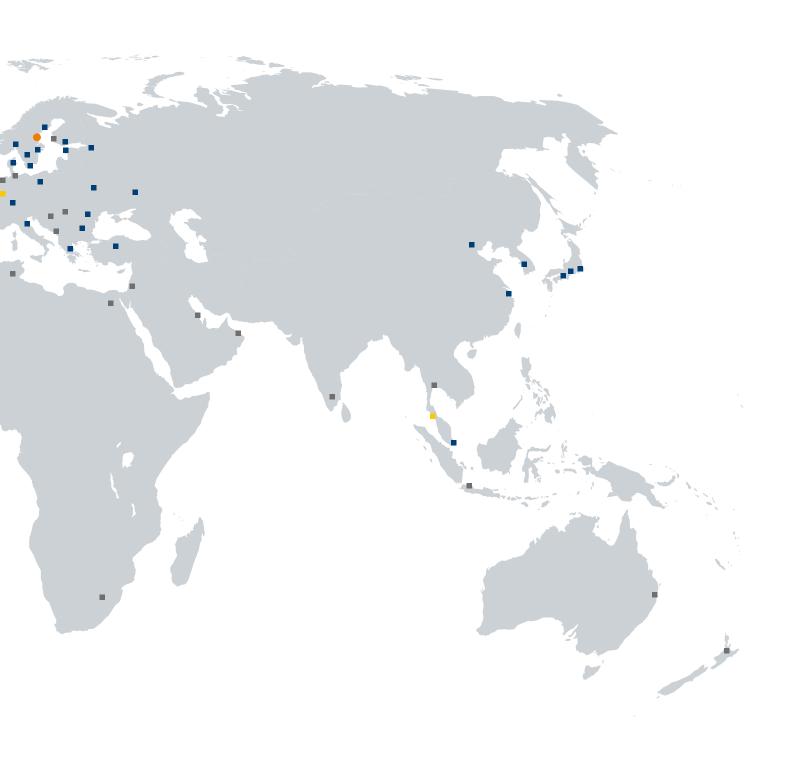
USA

Sunfab Hydraulics Inc. 6426 Hendry Road Suite A Charlotte, NC 28269

Tel: +1 (704) 509-6435

E-mail: sunfab-us@sunfab.com Website: www.sunfab.com/us

United Kingdom


Sunfab UK Ltd 1 Chapel Street Warwick, CV34 4HL

Tel: +44 8 442 578 900 Fax +44 8 442 578 911 E-mail: sales@sunfab.co.uk Website: www.sunfab.co.uk

Germany

Sunfab Hydraulik GmbH Am Bahnhof 9 DE-41352 Korschenbroich Germany

Tel: +49 (0)2161 574 46-0 Fax: +49 (0)2161 574 46-50 E-mail: info@sunfab.de Website: www.sunfab.de

France

Sunfab Hydraulique BP 60032, 54712 Cedex LUDRES (Meurthe-et-Moselle) France

Tel: +33 383 47 45 39 Fax: +33 383 47 60 52 E-mail: herve.m@sunfab.fr Website: www.sunfab.fr

Spain

Hidraulica Sunfab, S.L. Manuel Tovar 19 ES- 280 34 Madrid Spain

Tel: +34 91 729 38 88 Fax: +34 913 58 33 15 E-mail: info@sunfab.es Website: www.sunfab.es

Asia

Sunfab Hydraulics Asia Sdn Bhd Suite 16-08, Level 16 G Tower, 199 Jalan Tun Razak, 50400 Kuala Lumpur, Malaysia

Tel: +60 12 534 1480 E-mail: fredrik.j@sunfab.my Website: www.sunfab.com

Head office Sunfab Hydraulics AB Box 1094 Street address: Varvsgatan 2 - 4 SE-824 12 Hudiksvall, Sweden

E-mail: sunfab@sunfab.se Tel: +46 650 367 00

